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Session Topics

  Why hydrogen energy ?

 Alternative ways of H2 production today and tomorrow,
including those suitable for nuclear energy match.

 What nuclear technologies can play a role in the hydrogen
economy?

 What plans does DOE have for nuclear hydrogen?
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World Energy 1850-2000
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Fossil fuels are dominant and are almost 80% of supply today
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Is there enough fossil fuel for 2100?
YES.

 ULTIMATELY RECOVERABLE NONRENEWABLE RESOURCES
Rounded &  Approximate in Twy

1 TWy ≈ 30 EJ; today the world uses only ~15 TWy per year in total.

OIL & GAS, CONVENTIONAL     1,000
UNCONVENTIONAL OIL & GAS (excluding  clathrates)     2,000
COAL                           5,000
METHANE CLATHRATES            20,000
OIL SHALE       30,000

URANIUM IN CONVENTIONAL REACTORS 2,000
              ...IN BREEDER REACTORS       2,000,000

THORIUM in BREEDERS 6,000,000

FUSION, D-T FUEL (limited by lithium availability)   100,000,000
             ...D-D FUEL                   200,000,000,000

GEOTHERMAL STEAM               4,000
             …HOT  DRY ROCK                                   1,000,000

Sources: John Holdren, talk at the Carnegie Institution in Washington DC, March 2000
--Modified by thorium addition to Nuclear Resources
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History

Mean

USGS Estimates of Ultimate Recovery
 
                                Ultimate Recovery
 Probability                            BBls
--------------------                    ---------
Low (95 %)                          2,248
Mean (expected value)        3,003
High (5 %)                           3,896
                    

Note:  U.S. volumes were added to the USGS foreign volumes to obtain world totals.

Peak in 2037
Decline @ R/P = 10

Peak in 2030
Decline @ 5 %

2 %
Growth

Annual Production Scenarios for the Mean Resource Estimate 
Showing Sharp and Rounded Peaks

EIA Mean Estimate Forecast of World Oil Production
  (EIA. Long Term World Oil Supply. April 2000)
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Other
5.8%

Natural Gas
23.9%

Petroleum
39.4%

Nuclear 
8.3%

Conventional
Hydroelectric

2.4%

Wood, Waste,
Alcohol
2.8%

Geothermal
0.4%

Solar
0.1%
Wind
0.1%

U.S. Sources of Energy:  2001
Total Use:  97 Quadrillion Btu

1 Quad = 1.055 EJ

Source:  Energy Information Administration
http://www.eia.doe.gov/emeu/aer/txt/ptb0102.html

Coal
22.6%
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United States CO2 Emissions by Sector
and Fuels 2000

Millions of metric tons per year carbon equivalent
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    Atmospheric CO2 grew from 290 to 370 ppmv over the last 150 years
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Solutions for World Energy Concerns

 Nuclear, Renewable Energy and Coal with CO2
Sequestration can provide clean sources for electricity
without emissions.

 Hydrogen is an energy carrier not an energy source

 Efficiency improvements can only help reduce demand but
not eliminate it.

 Transportation alternative energy sources are needed:
Electrical Batteries and hydrogen fuel cells are desirable but
have many challenges.
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Source: Nuclear Engineering International, 2002
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Comparative Vehicle Technologies:
 Well-to-Wheels Energy Use

Current GV

Improved GV

Gasoline HEV

Gasoline FCV

Diesel HEV

NG FTD HEV

NG Distributed H2
FCV

NG Central H2 FCV

Nuclear/Renewable
Electrolysis H2 FCV

10000 30002000 700050004000 6000

Natural Gas

Oil

Non-Fossil Domestic

 Well to Pump
 Pump to Wheel

Source: DOE’s “Hydrogen, Fuel Cells & Infrastructure Technologies Program”
Btu/mile
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Comparison of Energy Density & Specific Energy
of Batteries & Hydrogen Fuel Cell

Fuel Cell
System +
5,000 psi
Hydrogen

Tanks

Pb-Acid
Deep

Discharge
Battery

NiMh
Battery

Lithium-Ion
Battery

USABC
Long Term

Goals
Energy Density
(Wh/I) 302 85 135 100 230
Specific Energy
(Wh/kg) 1,038 41 75 110 150

Source: The Hydrogen Economy, Fuel Cells and Hydrogen Fueled Cars: A technical Evaluation” 
by C. E. Thomas

Batteries require frequent recharges for a 300 mile range 
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Comparative Vehicle Technologies:
WTW Fuel Costs and CO2 Emissions

Retail Electrolysis, US Mix Electricity
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Hybrids and Gasoline FCV’s Improve both CO2 and Fuel Cost
Hybrids are commercially available
Gasoline FCV has several technical hurdles

SMR Hydrogen Cases Have Attractive CO2 Performance 
but Major Cost Challenges
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WELL-TO-WHEELS ENERGY USEWELL-TO-WHEELS ENERGY USE
  Based on NAE Assumptions, Report of January 2004Based on NAE Assumptions, Report of January 2004
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CARBON RELEASED DURING HCARBON RELEASED DURING H22 PRODUCTION, PRODUCTION,
DISPENSING & DELIVERYDISPENSING & DELIVERY (FUTURE TECHNOLOGIES) (FUTURE TECHNOLOGIES)
  Based on NAE AssumptionsBased on NAE Assumptions
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The Hydrogen Economy Has Started

 World wide 150 GWt worth of hydrogen were produced in 2002.
 The US uses 10 million tons/y (45 GWt)
 95% produced from Methane

 Consumes 5% of natural gas usage
 Not CO2 free:  74 M tons of CO2/y

 50% is used in fertilizer industry, and
37% in the oil industry

 97% produced near use site, no distribution infrastructure
 ~ 10%/y growth
    X 2 by 2010,     X 4 by 2020
 Hydrogen Economy will need

 X 18 current for transportation
 X 40 for all non-electric
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How Can We Get Hydrogen from Nuclear
Energy?

 Electricity – Electrolysis of Water ES
 Current technology but not efficient

 Thermal source for SMR
 Current Technology: Steam Methane Reforming
 Reduces GHG emissions by 20 to 40%

 Heat for Thermo-chemical water splitting TC
 R&D scale technology, high temperature catalyzed reactions

for water splitting
 Electricity/Heat – high temp. steam electrolysis HTES

 R&D scale technology
 Reversed fuel cells
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Candidate Nuclear Reactors for Thermochemical
Water-Splitting

 SNL/GA NERI evaluated 9 categories
 PWR, BWR, Organic, Alkali metal,

Heavy metal, Gas-cooled, Molten
salt  Liquid-core and Gas-core

 Assessed reactor features,
development requirements

 Current commercial reactors have too low
temperature

 Helium, heavy metal, molten salt rated
well; helium gas-cooled most developed

 Selected Modular Helium Reactors as
best suited for thermochemical production
of hydrogen

 MIT(Yildiz and Kazimi) examined the
He cooled MHR and added the concept
of:  Supercritical CO2 cooled
Advanced Gas Reactor with
electrolysis as highly desirable
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Scenario 1: MHR-SI

 SI-MHR: SI cycle using the heat from MHR, 4x600MWt=2400MWt.
 SI cycle was developed by GA:

Heat

MHR
Sulfur-Iodine Thermochemical

Water-Splitting Cycle
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Alternatives within the Sulfur Process

 GA used chemical process design code Aspen Plus
 Designed the three main chemical systems for the S-I process

 Prime or Bunsen reaction
2 H20 + SO2 + I2 → H2SO4 + 2HI

 Sulfuric acid & HI decomposition
H2SO4  → SO2 + H2O + 1/2 O2

2HI → I2 + H2

 GA estimated high efficiency
(52% at 9000C) and
 reasonable cost (~$250/kWt)
 Benefit of high reactor outlet temperature important

 Experimental verification is needed
 HI, H20, I2 Vapor-Liquid Equilibrium data needed
 Confirmation of HI reactive Distillation analysis  important, may allow further

cost savings
 The Westinghouse hybrid Chemical-Electrolysis Process simplifies the system

and boosts the energy efficiency above the S-I process

600 MWt H2
MHR Process Parameters

Material Flow rate
tons/day

Inventory
tons

H2 200 2
H2O 1,800 40
H2SO4 9,800 100
I2 203,200 2,120
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Candidate Nuclear Reactors for
H2 Production

Uncertainties exist in the future technology efficiency estimates.

NE: Not evaluated by Yildiz and Kazimi

Advanced Reactor Technology Toutlet (
oC) th (%)

Helium Gas Cooled Reactor, GT-MHR 850-950 42-48
Supercritical CO2 Cycle, e.g.:  S-AGR 550-650 40-45
Advanced Light Water Reactors, ALWR 285-320 32-34
Super Critical Water Reactor, SCWR 400-600 38-45
Advanced High Temperature Reactors, AHTR NE NE
Lead Bismusth Cooled Reactor NE NE

η

Current Technology (base case) Toutlet (oC) th (%)

Light Water Reactor, LWR (PWR) 320 33

η

900 -1100
550 - 850
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Overall efficiency for three scenarios
Efficiency of hydrogen production via 

AGR-SCO2-HTES, GT-MHR-HTES and MHR-SI
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The Near Term Scenario: SMR-MHR

 Steam Methane Reforming theoretical process efficiency at the
MHR  operating temperature of  850oC is 80%

* Source: Sandia National Laboratory
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Concluding Remarks

 Hydrogen Fuel Cells can improve energy security and reduce CO2
emissions but R and D efforts are needed to overcome infrastructure
and cost issues.

 Obstacles are more difficult for mobile FC than stationary FC.
 Hydrogen production favors high temperature reactors.
 Thermochemical and Thermoelectrical methods of water splitting

can be powered by nuclear and/or solar sources of heat.
 Electrolysis of high temperature steam could be preferred because

of its lower temperatures than chemical water splitting. However, its
units are small and total cost may be an issue.

 Supercritical CO2 power cycle is very promising and worthy of
development either for S-AGR or as an indirect cycle.

 Sequestration of CO2 is the wild card in affecting future solutions.


