The Promise and Challenge of Hydrogen Energy

Mujíd S. Kazímí

Director, Center for Advanced Nuclear Energy Systems (CANES) Massachusetts Institute of Technology

> 14th Pacific Basin Nuclear Conference March 23, 2004

MIT Nuclear Engineering Department

- Why hydrogen energy ?
- Alternative ways of H₂ production today and tomorrow, including those suitable for nuclear energy match.
- What nuclear technologies can play a role in the hydrogen economy?
- What plans does DOE have for nuclear hydrogen?

Fossil fuels are dominant and are almost 80% of supply today

Is there enough fossil fuel for 2100? YES.

ULTIMATELY RECOVERABLE NONRENEWABLE RESOURCES Rounded & Approximate in Twy

1 TWy \approx 30 EJ; today the world uses only \sim 15 TWy per year in total.

OIL & GAS, CONVENTIONAL UNCONVENTIONAL OIL & GAS (excluding clathrates) COAL METHANE CLATHRATES OIL SHALE	1,000 5,000	2,000 20,000 30,000
URANIUM IN CONVENTIONAL REACTORS IN BREEDER REACTORS THORIUM in BREEDERS	2,000 2,000,000 6,000,000	
FUSION, D-T FUEL (limited by lithium availability) D-D FUEL		100,000,000 200,000,000,000
GEOTHERMAL STEAM HOT DRY ROCK	4,000 1,000,000	:

Sources: John Holdren, talk at the Carnegie Institution in Washington DC, March 2000 --Modified by thorium addition to Nuclear Resources

Annual Production Scenarios for the Mean Resource Estimate Showing Sharp and Rounded Peaks

EIA Mean Estimate Forecast of World Oil Production (EIA. Long Term World Oil Supply. April 2000)

United States CO₂ Emissions by Sector and Fuels 2000

Millions of metric tons per year carbon equivalent

Carbon Dioxide Concentrations

Atmospheric CO2 grew from 290 to 370 ppmv over the last 150 years

Projected U.S. CO₂ Emissions by Sector and Fuel, 2000-2020 (million metric tons carbon equivalent per year)

2,500 -

Solutions for World Energy Concerns

- Nuclear, Renewable Energy and Coal with CO₂ Sequestration can provide clean sources for electricity without emissions.
- Hydrogen is an energy carrier not an energy source
- Efficiency improvements can only help reduce demand but not eliminate it.
- Transportation alternative energy sources are needed: Electrical Batteries and hydrogen fuel cells are desirable but have many challenges.

Nuclear electricity production and share of total electricity production

Source: Nuclear Engineering International, 2002

Comparative Vehicle Technologies: Well-to-Wheels Energy Use

Comparison of Energy Density & Specific Energy of Batteries & Hydrogen Fuel Cell

	Fuel Cell System + 5,000 psi Hydrogen Tanks	Pb-Acid Deep Discharge Battery	NiMh Battery	Lithium-Ion Battery	USABC Long Term Goals
Energy Density (Wh/I)	302	85	135	100	230
Specific Energy (Wh/kg)	1,038	41	75	110	150

Batteries require frequent recharges for a 300 mile range

Source: The Hydrogen Economy, Fuel Cells and Hydrogen Fueled Cars: A technical Evaluation" by C. E. Thomas

Comparative Vehicle Technologies: WTW Fuel Costs and CO₂ Emissions

WELL-TO-WHEELS ENERGY USE

Based on NAE Assumptions, Report of January 2004

CARBON RELEASED DURING H₂ PRODUCTION, DISPENSING & DELIVERY (FUTURE TECHNOLOGIES) Based on NAE Assumptions

DELIVERED H₂ COSTS OF VARIOUS TECHNOLOGIES

Current (left) and Future(right) Projections Based on NAE Assumptions

• GEA = Gasoline Efficiency Adjusted – scaled to hybrid vehicle efficiency

The Hydrogen Economy Has Started

- World wide 150 GWt worth of hydrogen were produced in 2002.
- The US uses 10 million tons/y (45 GWt)
- 95% produced from Methane
 - Consumes 5% of natural gas usage
 - Not CO₂ free: 74 M tons of CO₂/y
- 50% is used in fertilizer industry, and 37% in the oil industry
- 97% produced near use site, no distribution infrastructure
- ~ 10%/y growth
 - → X 2 by 2010, X 4 by 2020
- Hydrogen Economy will need
 - X 18 current for transportation
 - X 40 for all non-electric

How Can We Get Hydrogen from Nuclear Energy?

- Electricity Electrolysis of Water ES
 - Current technology but not efficient
- Thermal source for SMR
 - Current Technology: Steam Methane Reforming
 - Reduces GHG emissions by 20 to 40%
- Heat for Thermo-chemical water splitting TC
 - R&D scale technology, high temperature catalyzed reactions for water splitting
- Electricity/Heat high temp. steam electrolysis HTES
 - R&D scale technology
 - Reversed fuel cells

Candidate Nuclear Reactors for Thermochemical Water-Splitting

- SNL/GA NERI evaluated 9 categories
 - PWR, BWR, Organic, Alkali metal, Heavy metal, Gas-cooled, Molten salt Liquid-core and Gas-core
 - Assessed reactor features, development requirements
- Current commercial reactors have too low temperature
- Helium, heavy metal, molten salt rated well; helium gas-cooled most developed
- Selected Modular Helium Reactors as best suited for thermochemical production of hydrogen
- MIT(Yildiz and Kazimi) examined the He cooled MHR and added the concept of: Supercritical CO2 cooled Advanced Gas Reactor with electrolysis as highly desirable

H₂-MHR

Scenario 1: MHR-SI

- SI-MHR: SI cycle using the heat from MHR, 4x600MWt=2400MWt.
- SI cycle was developed by GA:

Alternatives within the Sulfur Process

- GA used chemical process design code Aspen Plus
- Designed the three main chemical systems for the S-I process
 - Prime or Bunsen reaction 2 H₂0 + SO₂ + I₂ → H₂SO₄ + 2HI
 - Sulfuric acid & HI decomposition $H_2SO_4 \rightarrow SO_2 + H_2O + 1/2 O_2$ $2HI \rightarrow I_2 + H_2$
- GA estimated high efficiency (52% at 900°C) and reasonable cost (~\$250/kWt)

MHR Process Parameters				
Material	Flow rate tons/day	Inventory tons		
\mathbf{H}_{2}	200	2		
H ₂ O	1,800	40		
H ₂ SO ₄	9,800	100		
I ₂	203,200	2,120		

- Benefit of high reactor outlet temperature important
- Experimental verification is needed
 - HI, H₂0, I₂ Vapor-Liquid Equilibrium data needed
 - Confirmation of HI reactive Distillation analysis important, may allow further cost savings
- The Westinghouse hybrid Chemical-Electrolysis Process simplifies the system and boosts the energy efficiency above the S-I process

Candidate Nuclear Reactors for H₂ Production

Current Technology (base case)	T _{outlet} (⁰C)	η _h (%)
Light Water Reactor, LWR (PWR)	320	33

Advanced Reactor Technology	T _{outlet} (°C)	ຖ <mark>, (%)</mark>
Helium Gas Cooled Reactor, GT-MHR	850-950	42-48
Supercritical CO2 Cycle, e.g.: S-AGR	550-650	40-45
Advanced Light Water Reactors, ALWR	285-320	32-34
Super Critical Water Reactor, SCWR	400-600	38-45
Advanced High Temperature Reactors, AHTR	900 -1100	NE
Lead Bismusth Cooled Reactor	550 - 850	NE

Uncertainties exist in the future technology efficiency estimates.

NE: Not evaluated by Yildiz and Kazimi

Power Cycle Thermodynamic Efficiency

Dostal et al, MIT 2002

Overall efficiency for three scenarios

25

The Near Term Scenario: SMR-MHR

 Steam Methane Reforming theoretical process efficiency at the MHR operating temperature of 850°C is 80%

* Source: Sandia National Laboratory

Concluding Remarks

- Hydrogen Fuel Cells can improve energy security and reduce CO₂ emissions but R and D efforts are needed to overcome infrastructure and cost issues.
- Obstacles are more difficult for mobile FC than stationary FC.
- Hydrogen production favors high temperature reactors.
- Thermochemical and Thermoelectrical methods of water splitting can be powered by nuclear and/or solar sources of heat.
- Electrolysis of high temperature steam could be preferred because of its lower temperatures than chemical water splitting. However, its units are small and total cost may be an issue.
- Supercritical CO₂ power cycle is very promising and worthy of development either for S-AGR or as an indirect cycle.
- Sequestration of CO₂ is the wild card in affecting future solutions.

