14th Pacific Basin Nuclear Conference "New Technologies for a New Era" March 21-25, 2004, Honolulu, Hawaii, U.S.A.

Advanced Nuclear Reactor Pr ograms in Korea

Plenary: "Looking Ahead: Developing a New Generation of Adva nced Nuclear Reactor and Fuel Cycle Technologies"

KANG, Chang Sun Seoul National University KO REA, Republic of

Nuclear Reactor Programs in Korea

14th Pacific Basin Nuclear Conference "New Technologies for a New Era" March 21-25, 2004, Honolulu, Hawaii, U.S.A.

SMART

A Small- & Medium-Sized Multi-Purpose Integral-Type Reactor

Advanced Reactor Programs in Korea

(GEN III+: Near-Term Deployment)

SMART (System integrated Modular Advanced ReacTor)

Electricity Generation System

SMART - General Characteristics

DESIGN INNOVATION

- Integral Arrangement of Primary Components
- □ Soluble Boron Free Operation
- Passive Residual Heat Removal
- □ Safeguard Vessel
- Full Size Condenser

SMART Design Goal: What do we achieve?

 \oplus

Safety	Core Damage Frequency	< 10 ⁻⁷ /RY	
Salety	Large Release Frequency	< 10 ⁻⁸ /RY	
	Electricity Generation Cost < Gas Turbine		
Economics	 Construction Period < 36 M Availability > 95% Reactor Lifetime 60 year 	lonths	

Results of Economic Assessment

Categories	construction cost (\$/kW)	electricity generation (\$/MWh)	seawater desalination (\$/ton)
1-Unit Plant (first unit)*	2,510	38.45	0.537
2-Unit Plant	2,409	37.22	0.509
4-Unit Plant	2,055	33.03	0.475

* Base Case: 90 MWe electricity generation and 40,000 ton/day seaw ater desalination with 330 MWt power.

Milestone Schedule of SMART Technology

Budget for SMART Technology Development

Phase	Time Period	Budget	SMART-P*	
inasc		Buuget		
I-1	'97.7- '99.3	Conceptual Design: 13.05	-	
	(1 year 9 months)			
I-2	'99.4-'02.3	Basic Design : 18.95		
	(3 years)			
II-1	'02.4-'05.3		Design & Tests : 70.0	
	(3 years)		(CP by March, 2005)	
II-2	'05.4-'08.6		Construction & Tests :	
	(3 years 3 months)		200.0	~~~~
	Total	32.00	270.0	

• Financing of SMART-P: 30% by Government; and 70% by Industries.

Note: Government approved the investment of full 270x10⁹ won for SMAR T-P Project on January 15, 2002 over a 7 year period (2002-2008).

International Activities in Promoting SMART

 \oplus

\succ	ndonesia + IAEA
	Preliminary Economic Feasibility Study of Nuclear Desalination in
	Madura Island, Indonesia
	◆BATAN, KAERI, and IAEA: Jan. 2002 ~ Dec. 2004 (3 years)
	Draft Study Report and User Requirement Document for Nuclear D esalination Plant Issued
	✤IAEA's Technical Cooperation Program for 2005 –2006 will be carri
	ed out.
	Other Countries
	Chile: Feasibility Study on Small- & Medium-Sized Reactors (11/03)
	Russia: Joint Study on Marine Use of SMART (03/04)
	China, UAE, Philippines, Vietnam, and Morocco: Technical Cooper
	ation
	10

Advanced Reactor Programs in Korea

(GEN IV: Long-Term R&D)

Interest of Korea
High Interest : SFR (KALIMER), VHTR (for H-2 Generation)
Medium Interest : SCWR, GFR
Low Interest : LFR, MSR

Gen IV R&D Planning Report Was Completed by Gen IV Technical Co mmittee in May 2003.

11

>2004 Budget for Gen IV
 *About 1 billion Won for Gen IV R&D Collaboration thru GIF
 *About 3 billion Won for Nuclear Hydrogen (VHTR)

Advanced Reactor Programs in Korea (INERI Program)

>INERI Program: Bilateral Nuclear R&D Collaboration between Korea a nd U.S.A. for Developing Gen IV and Advanced Nuclear Technologies since 2001.

Current INERI Projects (11 projects)
 \$4 projects for advanced LWR technologies (started in 2002)
 \$2 projects for advanced I&C technologies (started in 2002)
 \$5 projects for Gen IV technologies (started in 2003)

>3 New Collaboration Areas
 *Gen IV Nuclear Energy Systems
 *AFCI (Advanced Fuel Cycle Initiatives)
 *Nuclear Hydrogen

>Budget for INERI Program: 6.8 billion won for the year 2003

14th Pacific Basin Nuclear Conference "New Technologies for a New Era" March 21-25, 2004, Honolulu, Hawaii, U.S.A.

KALIMER – Korean Advanced Liquid M

etal Reactor

Sodium-Cooled Fast Reactor De velopment Program

Design Concept of KALIMER-600

On-Going R&D Activities

- Core Design Studies
- Development of Integrated IHX/SG
- Thermal Striping Analysis Methods
- □ Structural Integrity Assessment for Elevated Temperature Structures

- Water Leak Detection Techniques
- Computer Codes
 - Core Design
 - Core Seismic Response Analysis
 - System Transient Analysis
 - Flow Blockage Analysis
 - Long-term Behavior of SWR

Core Designs

Development of Integrated IHX/SG

Objective

- Enhanced plant safety through elimination of SWR event in SG
- Reduced construction cost through simplification of IHTS

On-going Activities

- Development of integrated IHX/SG concepts
 - Tube arrangements
 - Flow paths for intermediate medium
- Evaluation of heat transfer capabilities

Typical NSSS arrangements of Sodium-cooled

Sodium Experimental Facilities

14th Pacific Basin Nuclear Conference "New Technologies for a New Era" March 21-25, 2004, Honolulu, Hawaii, U.S.A.

VHTR - Very High Temperature Reactor Development of Hydrogen Prod uction System Using Nuclear En ergy

Objective of Project

Project started March of 2004 under a team in KAERI.

Develop Technology for Hydrogen Production

- HTGR (High Temperature Gas Cooled Reactor)
- Fuel for HTGR
- Sulfur Iodine Thermochemical process for hydrogen production
- Demonstration of Developed Technology by constructing and operating a Dedicated Nuclear Hydrogen Production Plant.
 - One 300 MWth VHTR-type module
 - Production of 30,000 ton of hydrogen per year (equivalent to the su pply fuel for 150,000 automobiles)
 - At the cost of 1,200 USD/ton of hydrogen

Project Timelines and Budget

Estimated Budget: 986.1 billion Wons (843 million U\$) by 2019

Паяс	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Year	2004 2005	2006 2007 2008	2009 2010 2011	2012 2013 2014 2015 2016	2017 2018 201
	Pre Conceptual				
	Design				
Reactor Design &		Conceptual Design			
Construction					
			Basic Design		
				Detailed Design	
				Construction	
Fuel	Technol	ogy for Coated Fuel			Operational
Fabrication			Fuel Fabrication		Demonstration
			racinty	Fuel Fabrication	~
Technology					
R&D	Ке	y Technology Development	under GIF Frame and Inter	national Collaboration	
	} }				
Hydrogen	Thermochemical			Demo Scale Plant Field Test	
Hydrogen Production	Thermochemical Basic	Lab. Scale Demo	Pilot Scale Demo	Demo Scale Plant Field Test	
Hydrogen Production	Thermochemical Basic	Lab. Scale Demo	Pilot Scale Demo	Demo Scale Plant Field Test	
Hydrogen Production	Thermochemical Basic	Lab. Scale Demo	Pilot Scale Demo	Demo Scale Plant	

Conclusion

•Korea does not have any other choice than keeping an aggressive nuclear power program since more than 97% of its energy required are imported from foreign countries.

•Hence, nuclear power has been one of major sources of electricity supply (about 40%) in Korea last 30 years.

•It has provided Korea with most economic and environmentally-frie ndly way of producing electric energy, and has contributed a lot in it s national economy growth. It will continue to do so in the future.

•Let me tell you in this occasion, Korea is really looking ahead in de veloping a new generation of advanced nuclear reactor and fuel cy cle technologies.